Natural Language Processing Introduction: what is Natural Language Processing (NLP)?

You have heard of Natural Language Processing (NLP) but you don’t know what it is precisely, and what it is used for? In this post, I will try to help you understand Natural Language Processing with some examples.

What is Natural Language Processing (NLP)?

Natural Language Processing is a subfield of linguistics, computer science, and artificial intelligence. This is the processing of language, words and speech, by a computer.

It is about developing interactions between computers and human language, and especially about how to program computers to process and analyze large amounts of natural language data.

Don’t make the mistake: Natural Language Processing is not only linguistics! Linguistics aims at understanding foreign languages through softwares.

Natural Language Processing is based on rules. But rules are not enough: context is also very important. When a friend tells you: « What a wonderful spring! », is it the season or the water ? Here is another example: « I go to the bank. ». Is it about walking along the bank of the river or about taking money to the bank?

So Natural Language Processing needs lots of rules and dictionaries.

Context is key in Natural Language Processing

What is Natural Language Processing for?

Thanks to Natural Language Processing, a machine can "understand" the contents of documents, including the contextual nuances of the language within them. A machine can also extract information and insights contained in the documents as well as categorize and organize the documents themselves.

Challenges in natural language processing frequently involve speech recognition, natural language understanding (NLU), and natural-language generation (NLG).

Why is Natural Language Processing interesting?

The world is full of unstructured data (i.e. data that is not formatted for machines): it amounts to 70-90% of digital data. Natural Language Processing is a great way to process these huge volumes of data.

« AI will power 95% of customer interactions by 2025.»


For companies, Natural Language Processing is a way to know their customers in an automated way and to create new opportunities (better knowledge, better targeting,...).

Natural Language Processing Use Cases

Here are some typical Natural Language Processing use cases:

Natural Language Processing is not new!

During World War 2, Alan Turing created a machine to understand the coded messages sent by the nazies, called Turing’s machine.

Turing Machine

Later, the Georgetown–IBM experiment was an influential demonstration of machine translation, which was performed during January 7, 1954. Developed jointly by the Georgetown University and IBM, the experiment involved completely automatic translation of more than sixty Russian sentences into English. It had only six grammar rules and 250 lexical items in its vocabulary.

Another interesting milestone was the ELIZA software, developed in 1966 the MIT Artificial Intelligence Laboratory by Joseph Weizenbaum. The most famous script, DOCTOR, simulated a psychotherapist and used rules, dictated in the script, to respond with non-directional questions to user inputs. As such, ELIZA was one of the first chatbots and one of the first programs capable of attempting the Turing test.


In this post, you discovered what natural language processing is and how it can be used in real life. Lots of challenges still exist but great progress have been made these last years in the Natural Language Processing field. Today, the maturity of Natural Language Processing encourages more and more companies to leverage Natural Language Processing in their product or in their internal organization. Feel free to try natural language processing on NLP Cloud!

Sylvie Krupsky
CMO at